首页> 外文OA文献 >Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?
【2h】

Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?

机译:一部分结晶的岩浆海洋可以解释火星的热化学演化吗?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. The subsequent cooling of the interior causes the magma ocean to freeze from the core-mantle boundary (CMB) to the surface due to the steeper slope of the mantle adiabat compared to the slope of the solidus.\ud\udAssuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid. A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid quickly forms on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong overheating of the lowermost mantle, whose temperature increases to values that exceed the liquidus. The iron-rich melt would most likely remain trapped in the lower part of the mantle. The upper mantle in that scenario cools rapidly and only shows partial melting during the first billion year of evolution. Therefore a fractionated global and deep magma ocean is difficult to reconcile with observations. Different scenarios assuming, for instance, a hemispherical or shallow magma ocean, or a crystallization sequence resulting in a lower density gradient than that implied by pure fractional crystallization will have to be considered.
机译:在行星积聚后期积累的冲击热会熔化陆地的很大一部分甚至整个地幔,从而形成全球岩浆海洋。内部的后续冷却导致岩浆海洋从岩心幔边界(CMB)冻结到地表,这是由于与固相线的斜度相比,地幔绝热层的斜度更陡。在海洋中,靠近地表的地方会产生密集的堆积物,这主要是由于不断演化的岩浆海洋液体中铁的富集。因此形成了重力不稳定的地幔,该地幔易于倾覆。我们使用二维圆柱几何中的地幔对流模拟研究累积倾覆及其对火星热演化的影响。我们提供了一组使用不同初始条件和强烈依赖温度的粘度的模拟。我们假设在最高50 km的岩浆海洋的冰冻阶段,所有放射源热源都得到了富集,并且由于冰冻岩浆海洋的脱气而产生的初始蒸汽气氛迅速消失,这表明地表温度为设置为当前值。在这种情况下,即使在允许塑性屈服机制的情况下,对流内部顶部也会迅速形成停滞的盖子,从而防止最上面的堆积物沉没。在这个密集的停滞盖下,地幔化学梯度稳定下来。对流模式以小规模结构为主,这些结构很难与火星表面观察到的大规模火山特征协调一致,并且在不到900 Ma的时间内部分融化就停止了。假设停滞的盖子可能由于其他机制而破裂并允许最上面的致密层翻转,则可获得稳定的密度梯度,其中最致密的材料和全部热源都位于CMB上方。这种分层导致最下层的地幔强烈过热,地幔的温度升高到超过液相线的值。富含铁的熔体很可能会残留在地幔的下部。在这种情况下,上地幔迅速冷却,仅在演化的前十亿年中显示出部分融化。因此,一个分散的全球性深部岩浆海洋很难与观测值相吻合。必须考虑不同的情况,例如,假设是半球形或浅岩浆海洋,或导致密度梯度低于纯分步结晶所暗示的密度梯度的结晶序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号